6 resultados para Capillary Electrophoresis Mass Spectrometry (CE-MS)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Cyclosporin is an immunosuppressant drug with a narrow therapeutic window. Trough and 2-h post-dose blood samples are currently used for therapeutic drug monitoring in solid organ transplant recipients. The aim of the current study was to develop a rapid HPLC-tandem mass spectrometry (HPLC-MS) method for the measurement of cyclosporin in whole blood that was not only suitable for the clinical setting but also considered a reference method. Methods: Blood samples (50 mu L) were prepared by protein precipitation followed by C-18 solid-phase extraction while using d(12) cyclosporin as the internal standard. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface in positive ionization mode. Results: The assay was linear from 10 to 2000 mu g/L (r(2) > 0.996, n = 9). Inter-day,analytical recovery and imprecision using whole blood quality control samples at 10, 30, 400, 1500, and 2000 mu g/L were 94.9-103.5% and

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assay using high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry (ESI-MS-MS) was developed for simultaneously determining concentrations of morphine, oxycodone, morphine-3-glucuronide, and noroxycodone, in 50 mul samples of rat serum. Deuterated (d(3)) analogues of each compound were used as internal standards. Samples were treated with acetonitrile to precipitate plasma proteins: acetonitrile was removed from the supernatant by centrifugal evaporation before analysis. Limits of quantitation (ng/ml) and their between-day accuracy and precision (%deviation and %CV) were-morphine, 3.8 (4.3% and 7.6%); morphine-3-glucuronide, 5.0 (4.5% and 2.9%); oxycodone, 4.5 (0.4% and 9.3%); noroxycodone, 5.0 (8.5% and 4.6%). (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid method has been developed for the quantification of the prototypic cyclotide kalata B I in water and plasma utilizing matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry. The unusual structure of the cyclotides means that they do not ionise as readily as linear peptides and as a result of their low ionisation efficiency, traditional LC/MS analyses were not able to reach the levels of detection required for the quantification of cyclotides in plasma for pharmacokinetic studies. MALDI-TOF-MS analysis showed linearity (R-2 > 0.99) in the concentration range 0.05-10 mu g/mL with a limit of detection of 0.05 mu g/mL (9 fmol) in plasma. This paper highlights the applicability of MALDI-TOF mass spectrometry for the rapid and sensitive quantification of peptides in biological samples without the need for extensive extraction procedures. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography coupled by an electrospray ion source to a tandem mass spectrometer (HPLC-EST-MS/ MS) is the current analytical method of choice for quantitation of analytes in biological matrices. With HPLC-ESI-MS/MS having the characteristics of high selectivity, sensitivity, and throughput, this technology is being increasingly used in the clinical laboratory. An important issue to be addressed in method development, validation, and routine use of HPLC-ESI-MS/MS is matrix effects. Matrix effects are the alteration of ionization efficiency by the presence of coeluting substances. These effects are unseen in the chromatograrn but have deleterious impact on methods accuracy and sensitivity. The two common ways to assess matrix effects are either by the postextraction addition method or the postcolumn infusion method. To remove or minimize matrix effects, modification to the sample extraction methodology and improved chromatographic separation must be performed. These two parameters are linked together and form the basis of developing a successful and robust quantitative HPLC-EST-MS/MS method. Due to the heterogenous nature of the population being studied, the variability of a method must be assessed in samples taken from a variety of subjects. In this paper, the major aspects of matrix effects are discussed with an approach to address matrix effects during method validation proposed. (c) 2004 The Canadian Society of Clinical Chemists. All rights reserved.